English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Electrofused giant protoplasts of Saccharomyces cerevisiae as a novel system for electrophysiological studies on membrane proteins

MPS-Authors
/persons/resource/persons137916

Terpitz,  Ulrich
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137592

Bamberg,  Ernst
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137964

Zimmermann,  Dirk
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Terpitz, U., Raimunda, D., Westhoff, M., Sukhorukov, V. L., Beaugé, L., Bamberg, E., et al. (2008). Electrofused giant protoplasts of Saccharomyces cerevisiae as a novel system for electrophysiological studies on membrane proteins. Biochimica et Biophysica Acta: BBA, 1778(6), 1493-1500. doi:10.1016/j.bbamem.2008.03.015.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-D849-C
Abstract
Giant protoplasts of Saccharomyces cerevisiae of 10-35 microm in diameter were generated by multi-cell electrofusion. Thereby two different preparation strategies were evaluated with a focus on size distribution and "patchability" of electrofused protoplasts. In general, parental protoplasts were suitable for electrofusion 1-12 h after isolation. The electrophysiological properties of electrofused giant protoplasts could be analyzed by the whole-cell patch clamp technique. The area-specific membrane capacitance (0.66+/-0.07 microF/cm(2)) and conductance (23-44 microS/cm(2)) of giant protoplasts were consistent with the corresponding data for parental protoplasts. Measurements with fluorescein-filled patch pipettes allowed to exclude any internal compartmentalisation of giant protoplasts by plasma membranes, since uniform (diffusion-controlled) dye uptake was only observed in the whole-cell configuration, but not in the cell-attached formation. The homogeneous structure of giant protoplasts was further confirmed by the observation that no plasma membrane associated fluorescence was seen in the interior of giant cells after electrofusion of protoplasts expressing the light-activated cation channel Channelrhodopsin-2 (ChR2) linked to yellow fluorescent protein (YFP). Patch clamp analysis of the heterologously expressed ChR2-YFP showed typical blue light dependent, inwardly-directed currents for both electrofused giant and parental protoplasts. Most importantly, neither channel characteristics nor channel expression density was altered by electric field treatment. Summarising, multi-cell electrofusion increases considerably the absolute number of membrane proteins accessible in patch clamp experiments, thus presumably providing a convenient tool for the biophysical investigation of low-signal transporters and channels.