English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Activation and inactivation kinetics of a Ca2+-activated Cl- current: photolytic Ca2+ concentration and voltage jump experiments

MPS-Authors
/persons/resource/persons137690

Haase,  Andreas
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137696

Hartung,  Klaus
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Haase, A., & Hartung, K. (2006). Activation and inactivation kinetics of a Ca2+-activated Cl- current: photolytic Ca2+ concentration and voltage jump experiments. Pflügers Archiv: European Journal of Physiology, 452, 81-90. doi:10.1007/s00424-005-0004-y.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-D943-0
Abstract
The activation kinetics of the endogenous Ca(2+)-activated Cl(-) current (I (Cl,Ca)) from Xenopus oocytes was investigated in excised "giant" membrane patches with voltage and Ca(2+) concentration jumps performed by the photolytic cleavage of the chelator DM-nitrophen. Currents generated by photolytic Ca(2+) concentration jumps begin with a lag phase followed by an exponential rising phase. Both phases show little voltage dependence but are Ca(2+)-dependent. The lag phase decreases from about 10 ms after a small Ca(2+) concentration jump (0.1 microM) to less than 1 ms after a saturating concentration jump (55 microM). The rate constant of the rising phase is half-maximal at about 5 microM. At saturating Ca(2+) concentrations, the rate constant is 400 to 500 s(-1). The Ca(2+) dependence of the stationary current can be described by the Hill equation with n=2.3 and K (0.5)=0.5 microM. The amplitude of the stationary current decreases after the excision of the membrane patch with t (1/2) approximately 5 min (run-down). The activation kinetics of the current elicited by a Ca(2+) concentration jump is not affected by the run-down phenomenon. At low Ca(2+) concentration (0.3 microM), voltage jumps induce a slowly activating current with voltage-independent time-course. Activation is preceded by an initial transient of about 1-ms duration. At saturating Ca(2+) levels (1 mM), the initial transient decays to a stationary current. The transient can be explained by a voltage-dependent inactivation process. The experimental data reported here can be described by a linear five-state reaction model with two sequential voltage-dependent Ca(2+)-binding steps, followed by a voltage-independent rate-limiting transition to the open and a voltage-dependent transition to a closed, inactivated state.