English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

NMDAR channel segments forming the extracellular vestibule inferred from the accessibility of substituted cysteines

MPS-Authors
/persons/resource/persons92136

Beck,  Christine
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95979

Wollmuth,  Lonnie P.
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95292

Seeburg,  Peter H.
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95089

Sakmann,  Bert
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons93934

Kuner,  Thomas
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Beck, C., Wollmuth, L. P., Seeburg, P. H., Sakmann, B., & Kuner, T. (1999). NMDAR channel segments forming the extracellular vestibule inferred from the accessibility of substituted cysteines. Neuron, 22(3), 559-570. doi:10.1016/S0896-6273(00)80710-2.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0024-6048-5
Abstract
In NMDA receptor channels, the M2 loop forms the narrow constriction and the cytoplasmic vestibule. The identity of an extracellular vestibule leading toward the constriction remained unresolved. Using the substituted cysteine accessibility method (SCAM), we identified channel-lining residues of the NR1 subunit in the region preceding M1 (preM1), the C-terminal part of M3 (M3C), and the N-terminal part of M4 (M4N). These residues are located on the extracellular side of the constriction and, with one exception, are exposed to the pore independently of channel activation, suggesting that the gate is at the constriction or further cytoplasmic to it. Permeation of Ca2+ ions was decreased by mutations in M3C and M4N, but not by mutations in preM1, suggesting a functionally distinct contribution of the segments to the extracellular vestibule of the NMDA receptor channel