English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Experimental Evidence for Proton Motive Force-Dependent Catalysis by the Diheme-Containing Succinate:Menaquinone Oxidoreductase from the Gram-Positive Bacterium Bacillus licheniformis

MPS-Authors
/persons/resource/persons137785

Madej,  M. Gregor
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137706

Hilgendorff,  Nicole S.
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137768

Lancaster,  C. Roy D.
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Madej, M. G., Nasiri, H. R., Hilgendorff, N. S., Schwalbe, H., Unden, G., & Lancaster, C. R. D. (2006). Experimental Evidence for Proton Motive Force-Dependent Catalysis by the Diheme-Containing Succinate:Menaquinone Oxidoreductase from the Gram-Positive Bacterium Bacillus licheniformis. Biochemistry, 45(50), 15049-15055. doi:10.1021/bi0618161.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-D9AE-4
Abstract
In Gram-positive bacteria and other prokaryotes containing succinate:menaquinone reductases, it has previously been shown that the succinate oxidase and succinate:menaquinone reductase activities are lost when the transmembrane electrochemical proton potential, Δp, is abolished by the rupture of the bacteria or by the addition of a protonophore. It has been proposed that the endergonic reduction of menaquinone by succinate is driven by the electrochemical proton potential. Opposite sides of the cytoplasmic membrane were envisaged to be separately involved in the binding of protons upon the reduction of menaquinone and their release upon succinate oxidation, with the two reactions linked by the transfer of two electrons through the enzyme. However, it has previously been argued that the observed Δp dependence is not associated specifically with the succinate:menaquinone reductase. Definitive insight into the mechanism of catalysis of this reaction requires a corresponding functional characterization of an isolated, membrane-bound succinate:menaquinone reductase from a Gram-positive bacterium. Here, we describe the purification, reconstitution into proteoliposomes, and functional characterization of the diheme-containing succinate:menaquinone reductase from the Gram-positive bacterium Bacillus licheniformis and, with the help of the design, synthesis, and characterization of quinones with finely tuned oxidation/reduction potentials, provide unequivocal evidence for Δp-dependent catalysis of succinate oxidation by quinone as well as for Δp generation upon catalysis of fumarate reduction by quinol.