English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Sugar Binding Induced Charge Translocation in the Melibiose Permease from Escherichia coli.

MPS-Authors
/persons/resource/persons137799

Meyer-Lipp,  Kerstin
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137662

Ganea,  Constanta
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137653

Fendler,  Klaus
Department of Biophysical Chemistry, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Meyer-Lipp, K., Ganea, C., Pourcher, T., Leblanc, G., & Fendler, K. (2004). Sugar Binding Induced Charge Translocation in the Melibiose Permease from Escherichia coli. Biochemistry, 43, 12606-12613. doi:10.1021/bi0489053.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-DA76-3
Abstract
Electrogenic events associated with the activity of the melibiose permease (MelB), a transporter from Escherichia coli, were investigated. Proteoliposomes containing purified MelB were adsorbed to a solid supported lipid membrane, activated by a substrate concentration jump, and transient currents were measured. When the transporter was preincubated with Na(+) at saturating concentrations, a charge translocation in the protein upon melibiose binding could still be observed. This result demonstrates that binding of the uncharged substrate melibiose triggers a charge displacement in the protein. Further analysis showed that the charge displacement is neither related to extra Na(+) binding to the transporter, nor to the displacement of already bound Na(+) within the transporter. The electrogenic melibiose binding process is explained by a conformational change with concomitant displacement of charged amino acid side chains and/or a reorientation of helix dipoles. A kinetic model is suggested, in which Na(+) and melibiose binding are distinct electrogenic processes associated with approximately the same charge displacement. These binding reactions are fast in the presence of the respective cosubstrate (k > 50 s(-1)).