Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Structural characterization of neuronal voltage-sensitive K+ channels heterologously expressed in Pichia pastoris

MPG-Autoren
/persons/resource/persons137827

Parcej,  David N.
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

/persons/resource/persons137642

Eckhardt-Strelau,  Luise
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Parcej, D. N., & Eckhardt-Strelau, L. (2003). Structural characterization of neuronal voltage-sensitive K+ channels heterologously expressed in Pichia pastoris. Journal of Molecular Biology, 333(1), 103-116. doi:10.1016/j.jmb.2003.07.009.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0024-DB5D-6
Zusammenfassung
Neuronal voltage-dependent K+ channels of the delayed rectifier type consist of multiple Kv α subunit variants, which assemble as hetero- or homotetramers, together with four Kvβ auxiliary subunits. Direct structural information on these proteins has not been forthcoming due to the difficulty in isolating the native K+ channels. We have overexpressed the subunit genes in the yeast Pichia pastoris. The Kv1.2 subunit expressed alone is shown to fold into a native conformation as determined by high-affinity binding of 125I-labelled α-dendrotoxin, while co-expressed Kv1.2 and Kvβ2 subunits co-assembled to form native-like oligomers. Sites of post-translational modifications causing apparent heterogeneity on SDS-PAGE were identified by site-directed mutagenesis. Engineering to include affinity tags and scale-up of production by fermentation allowed routine purification of milligram quantities of homo- and heteroligomeric channels. Single-particle electron microscopy of the purified channels was used to generate a 3D volume to 2.1 nm resolution. Protein domains were assigned by fitting crystal structures of related bacterial proteins. Addition of exogenous lipid followed by detergent dialysis produced well-ordered 2D crystals that exhibited mostly p121 symmetry. Projection maps of negatively stained crystals show the constituent molecules to be 4-fold symmetric, as expected for the octameric K+ channel complex.