Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Structure of adenylylsulfate reductase from the hyperthermophilic Archaeoglobus fulgidus at 1.6-Å resolution

MPG-Autoren
/persons/resource/persons137648

Ermler,  U.
Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Fritz, G., Roth, A., Schiffer, A., Buchert, T., Bourenkov, G., Bartunik, H. D., et al. (2002). Structure of adenylylsulfate reductase from the hyperthermophilic Archaeoglobus fulgidus at 1.6-Å resolution. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 1836-1841.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0024-DC65-A
Zusammenfassung
The iron-sulfur flavoenzyme adenylylsulfate (adenosine 5'-phosphosulfate, APS) reductase catalyzes reversibly the reduction of APS to sulfite and AMP. The structures of APS reductase from the hyperthermophilic Archaeoglobus fulgidus in the two-electron reduced state and with sulfite bound to FAD are reported at 1.6- and 2.5-Angstrom resolution, respectively. The FAD-sulfite adduct was detected after soaking the crystals with APS. This finding and the architecture of the active site strongly suggest that catalysis involves a nucleophilic attack of the N5 atom of reduced FAD on the sulfur atom of APS. In view of the high degree of similarity between APS reductase and fumarate reductase especially with regard to the FAD-binding a-subunit, it is proposed that both subunits originate from a common ancestor resembling archaeal APS reductase. The two electrons required for APS reduction are transferred via two [4Fe-4S] clusters from the surface of the protein to FAD. The exceptionally large difference in reduction potential of these clusters (-60 and -500 mV) can be explained by interactions of the clusters with the protein matrix. [References: 38]