English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Assignment of spectral substructures to pigment-binding sites in higher plant light-harvesting complex LHC-II

MPS-Authors
/persons/resource/persons137764

Kühlbrandt,  Werner       
Department of Structural Biology, Max Planck Institute of Biophysics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Rogl, H., Schodel, R., Lokstein, H., Kühlbrandt, W., & Schubert, A. (2002). Assignment of spectral substructures to pigment-binding sites in higher plant light-harvesting complex LHC-II. Biochemistry, 41(7), 2281-2287. doi:10.1021/bi015875k.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-DC97-9
Abstract
The trimeric main light-harvesting complex (LHC-II) is the only antenna complex of higher plants of which a high-resolution 3D structure has been obtained (Kuhlbrandt, W., Wang, D., and Fujiyoshi, Y. (1994) Nature 367, 614-621) and which can be refolded in vitro from its components. Four different recombinant forms of LHC-II, each with a specific chlorophyll (Chl) binding site removed by site-directed mutagenesis, were refolded from heterologously overexpressed apoprotein, purified pigments, and lipid. Absorption spectra of mutant LHC-II were measured in the temperature range from 4 to 300 K and compared to likewise refolded wild-type complex and to native LHC-II isolated from pea chloroplasts. Chls at different binding sites have characteristic, well-defined absorption sub-bands. Mixed occupation of binding sites with Chls a and b is not observed. Temperature-dependent changes of the mutant absorption spectra reveal a consistent shift of the major difference bands but an irregular behavior of minor bands. A model of the spectral substructure of LHC-II is proposed which accounts for the different absorption properties of the 12 individual Chls in the complex, thus establishing a first consistent correlation between the 3D structure of LHC-II and its spectral properties. The spectral substructure is valid for recombinant and native LHC-II, indicating that both have the same spatial arrangement of Chls and that the refolded complex is fully functional.