日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Structure-Function Analyses of Human Kallikrein-related Peptidase 2 Establish the 99-Loop as Master Regulator of Activity

MPS-Authors
/persons/resource/persons77884

Debela,  Mekdes
Former Research Groups, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

J. Biol. Chem.-2014-Skala-34267-83.pdf
(全文テキスト(全般)), 5MB

付随資料 (公開)
There is no public supplementary material available
引用

Skala, W., Utzschneider, D. T., Magdolen, V., Debela, M., Guo, S., Craik, C. S., Brandstetter, H., & Goettig, P. (2014). Structure-Function Analyses of Human Kallikrein-related Peptidase 2 Establish the 99-Loop as Master Regulator of Activity. JOURNAL OF BIOLOGICAL CHEMISTRY, 289(49), 34267-34283. doi:10.1074/jbc.M114.598201.


引用: https://hdl.handle.net/11858/00-001M-0000-0024-90F0-C
要旨
Background: Serine proteases KLK2 and KLK3 clear the way for spermatozoa before impregnation. Results: Enzymatic assays and structures of KLK2 elucidate its catalytic action, especially when compared with conformations of similar proteases. Conclusion: Flexible loops around the active site of serine proteases open concertedly upon substrate binding. Significance: This mechanistic model will stimulate the design of pharmaceutical inhibitors. Human kallikrein-related peptidase 2 (KLK2) is a tryptic serine protease predominantly expressed in prostatic tissue and secreted into prostatic fluid, a major component of seminal fluid. Most likely it activates and complements chymotryptic KLK3 (prostate-specific antigen) in cleaving seminal clotting proteins, resulting in sperm liquefaction. KLK2 belongs to the classical KLKs 1-3, which share an extended 99- or kallikrein loop near their non-primed substrate binding site. Here, we report the 1.9 crystal structures of two KLK2-small molecule inhibitor complexes. In both structures discontinuous electron density for the 99-loop indicates that this loop is largely disordered. We provide evidence that the 99-loop is responsible for two biochemical peculiarities of KLK2, i.e. reversible inhibition by micromolar Zn2+ concentrations and permanent inactivation by autocatalytic cleavage. Indeed, several 99-loop mutants of KLK2 displayed an altered susceptibility to Zn2+, which located the Zn2+ binding site at the 99-loop/active site interface. In addition, we identified an autolysis site between residues 95e and 95f in the 99-loop, whose elimination prevented the mature enzyme from limited autolysis and irreversible inactivation. An exhaustive comparison of KLK2 with related structures revealed that in the KLK family the 99-, 148-, and 220-loop exist in open and closed conformations, allowing or preventing substrate access, which extends the concept of conformational selection in trypsin-related proteases. Taken together, our novel biochemical and structural data on KLK2 identify its 99-loop as a key player in activity regulation.