User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

Lorenz gauge gravitational self-force calculations of eccentric binaries using a frequency domain procedure


Hopper,  Seth
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

(Preprint), 899KB

(Any fulltext), 775KB

Supplementary Material (public)
There is no public supplementary material available

Osburn, T., Forseth, E., Evans, C., & Hopper, S. (2014). Lorenz gauge gravitational self-force calculations of eccentric binaries using a frequency domain procedure. Physical Review D, 90: 104031. doi:10.1103/PhysRevD.90.104031.

Cite as: http://hdl.handle.net/11858/00-001M-0000-0024-753D-3
We present an algorithm for calculating the metric perturbations and gravitational self-force for extreme-mass-ratio inspirals (EMRIs) with eccentric orbits. The massive black hole is taken to be Schwarzschild and metric perturbations are computed in Lorenz gauge. The perturbation equations are solved as coupled systems of ordinary differential equations in the frequency domain. Accurate local behavior of the metric is attained through use of the method of extended homogeneous solutions and mode-sum regularization is used to find the self-force. We focus on calculating the self-force with sufficient accuracy to ensure its error contributions to the phase in a long term orbital evolution will be $\delta\Phi \lesssim 10^{-2}$ radians. This requires the orbit-averaged force to have fractional errors $\lesssim 10^{-8}$ and the oscillatory part of the self-force to have errors $\lesssim 10^{-3}$ (a level frequently easily exceeded). Our code meets this error requirement in the oscillatory part, extending the reach to EMRIs with eccentricities of $e \lesssim 0.8$, if augmented by use of fluxes for the orbit-averaged force, or to eccentricities of $e \lesssim 0.5$ when used as a stand-alone code. Further, we demonstrate accurate calculations up to orbital separations of $a \simeq 100 M$, beyond that required for EMRI models and useful for comparison with post-Newtonian theory. Our principal developments include (1) use of fully constrained field equations, (2) discovery of analytic solutions for even-parity static modes, (3) finding a pre-conditioning technique for outer homogeneous solutions, (4) adaptive use of quad-precision and (5) jump conditions to handle near-static modes, and (6) a hybrid scheme for high eccentricities.