English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Resolving anisotropic distributions of correlated vibrational motion in protein hydration water

MPS-Authors
/persons/resource/persons132929

Heyden,  Matthias
Research Group Heyden, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Heyden, M. (2014). Resolving anisotropic distributions of correlated vibrational motion in protein hydration water. The Journal of Chemical Physics, 141(22), 22D509/1-22D509/10. doi:10.1063/1.4896073.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-76A1-A
Abstract
In this study, we analyze correlations of vibrational motion on the surface of a small globular protein and in its hydration shell. In contrast to single particle hydration water dynamics, which are perturbed by interactions with the protein solute only in the first few hydration layers, we find that correlated, collective motions extend into the surrounding solvent on a 10 Å length scale, specifically at far-infrared frequencies below 100 cm−1. As a function of frequency, we analyze the distribution of correlated longitudinal motions in the three-dimensional environment of the protein solute, as well as in the vicinity of different protein-water interfaces. An anisotropic distribution of these correlations is observed, which is related to specific protein-water vibrations and interactions at the interfaces, as well as flexibilities of solvent exposed sites. Our results show that coupling of protein and water dynamics leaves a three-dimensional imprint in the collective dynamics of its hydration shell, and we discuss potential implications for biomolecular function, e.g., molecular recognition and binding, and the dynamical coupling of proteins to their native solvation environment.