English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Energy transfer in porphyrin-functionalized graphene

MPS-Authors
/persons/resource/persons104347

Malic,  Ermin
Institut für Theoretische Physik, Technische Universität Berlin;
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21304

Appel,  Heiko
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21637

Hofmann,  Oliver T.
Theory, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22028

Rubio,  Angel
Theory, Fritz Haber Institute, Max Planck Society;
Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Departamento de F;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Malic, E., Appel, H., Hofmann, O. T., & Rubio, A. (2014). Energy transfer in porphyrin-functionalized graphene. Physica Status Solidi B, 251(12), 2495-2498. doi:10.1002/pssb.201451246.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-93E4-A
Abstract
We present a theoretical study on the molecule–substrate interaction within the porphyrin-functionalized graphene. Recent experiments on porphyrin-functionalized carbon nanotubes have revealed an extremely efficient energy transfer from the adsorbed molecules to the carbon substrate. To investigate the energy transfer mechanism, we have characterized the hybrid structure within the density functional theory including the calculation of the molecular transition dipole moment, which allows us to determine the Förster coupling rate. We find a strongly pronounced Förster-induced energy transfer in the range of fs−1 inline image confirming the experimental observations.