Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Short gamma-ray bursts in the "time-reversal" scenario


Ciolfi,  Riccardo
AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Siegel,  Daniel M.
AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

(Preprint), 293KB

(Any fulltext), 280KB

Supplementary Material (public)
There is no public supplementary material available

Ciolfi, R., & Siegel, D. M. (2015). Short gamma-ray bursts in the "time-reversal" scenario. The Astrophysical Journal Letters, 798(2): L36. doi:10.1088/2041-8205/798/2/L36.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-9440-3
Short gamma-ray bursts (SGRBs) are among the most luminous explosions in the Universe and their origin still remains uncertain. Observational evidence favors the association with binary neutron star or neutron star-black hole (NS-BH) binary mergers. Leading models relate SGRBs to a relativistic jet launched by the BH-torus system resulting from the merger. However, recent observations have revealed a large fraction of SGRB events accompanied by X-ray afterglows with durations $\sim10^2-10^5 \mathrm{s}$, suggesting continuous energy injection from a long-lived central engine, which is incompatible with the short ($\lesssim1 \mathrm{s}$) accretion timescale of a BH-torus system. The formation of a supramassive NS, resisting the collapse on much longer spin-down timescales, can explain these afterglow durations, but leaves serious doubts on whether a relativistic jet can be launched at merger. Here we present a novel scenario accommodating both aspects, where the SGRB is produced after the collapse of a supramassive NS. Early differential rotation and subsequent spin-down emission generate an optically thick environment around the NS consisting of a photon-pair nebula and an outer shell of baryon-loaded ejecta. While the jet easily drills through this environment, spin-down radiation diffuses outwards on much longer timescales and accumulates a delay that allows the SGRB to be observed before (part of) the long-lasting X-ray signal. By analyzing diffusion timescales for a wide range of physical parameters, we find delays that can generally reach $\sim10^5 \mathrm{s}$, compatible with observations. The success of this fundamental test makes this "time-reversal" scenario an attractive alternative to current SGRB models.