English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Thesis

Q-operators, Yangian invariance and the quantum inverse scattering method

MPS-Authors

Frassek,  Rouven
AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1412.3339.pdf
(Preprint), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Frassek, R. (2014). Q-operators, Yangian invariance and the quantum inverse scattering method. PhD Thesis.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-97C4-3
Abstract
Inspired by the integrable structures appearing in weakly coupled planar N=4 super Yang-Mills theory, we study Q-operators and Yangian invariants of rational integrable spin chains. We review the quantum inverse scattering method along with the Yang-Baxter equation which is the key relation in this systematic approach to study integrable models. Our main interest concerns rational integrable spin chains and lattice models. We recall the relation among them and how they can be solved using Bethe ansatz methods incorporating so-called Q-functions. In order to remind the reader how the Yangian emerges in this context, an overview of its so-called RTT-realization is provided. The main part is based on the author's original publications. Firstly, we construct Q-operators whose eigenvalues yield the Q-functions for rational homogeneous spin chains. The Q-operators are introduced as traces over certain monodromies of R-operators. Our construction allows us to derive the hierarchy of commuting Q-operators and the functional relations among them. We study how the nearest-neighbor Hamiltonian and in principle also higher local charges can be extracted from the Q-operators directly. Secondly, we formulate the Yangian invariance condition, also studied in relation to scattering amplitudes of N=4 super Yang-Mills theory, in the RTT-realization. We find that Yangian invariants can be interpreted as special eigenvectors of certain inhomogeneous spin chains. This allows us to apply the algebraic Bethe ansatz and derive the corresponding Bethe equations that are relevant to construct the invariants. We examine the connection between the Yangian invariant spin chain eigenstates whose components can be understood as partition functions of certain 2d lattice models and tree-level scattering amplitudes of the four-dimensional gauge theory. Finally, we conclude and discuss some future directions.