Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

3-D model simulations of dynamical and microphysical interactions in pyroconvective clouds under idealized conditions

MPG-Autoren
/persons/resource/persons101295

Su,  H.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons140330

Chang,  D.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100833

Andreae,  M. O.
Biogeochemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101189

Pöschl,  U.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Reutter, P., Trentmann, J., Seifert, A., Neis, P., Su, H., Chang, D., et al. (2014). 3-D model simulations of dynamical and microphysical interactions in pyroconvective clouds under idealized conditions. Atmospheric Chemistry and Physics, 14(14), 7573-7583. doi:10.5194/acp-14-7573-2014.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0024-B3DF-2
Zusammenfassung
Dynamical and microphysical processes in pyroconvective clouds in mid-latitude conditions are investigated using idealized three-dimensional simulations with the Active Tracer High resolution Atmospheric Model (ATHAM). A state-of-the-art two-moment microphysical scheme building upon a realistic parameterization of cloud condensation nuclei (CCN) activation has been implemented in order to study the influence of aerosol concentration on cloud development. The results show that aerosol concentration influences the formation of precipitation. For low aerosol concentrations (N-CN = 200 cm(-3)), rain droplets are rapidly formed by autoconversion of cloud droplets. This also triggers the formation of large graupel and hail particles, resulting in an early onset of precipitation. With increasing aerosol concentration (N-CN = 1000 cm(-3) and N-CN = 20 000 cm(-3)) the formation of rain droplets is delayed due to more but smaller cloud droplets. Therefore, the formation of ice crystals and snowflakes becomes more important for the eventual formation of graupel and hail, which is delayed at higher aerosol concentrations. This results in a delay of the onset of precipitation and a reduction of its intensity with increasing aerosol concentration. This study is the first detailed investigation of the interaction between cloud microphysics and the dynamics of a pyroconvective cloud using the combination of a high-resolution atmospheric model and a detailed microphysical scheme.