日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Effects of global change during the 21st century on the nitrogen cycle

MPS-Authors
/persons/resource/persons62612

Zaehle,  Sönke
Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;
Terrestrial Biosphere Modelling , Dr. Sönke Zähle, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

BGC2195D.pdf
(出版社版), 4MB

BGC2195.pdf
(出版社版), 5MB

付随資料 (公開)
There is no public supplementary material available
引用

Fowler, D., Steadman, C. E., Stevenson, D., Coyle, M., Rees, R. M., Skiba, U. M., Sutton, M. A., Cape, J. N., Dore, A. J., Vieno, M., Simpson, D., Zaehle, S., Stocker, B. D., Rinaldi, M., Facchini, M. C., Flechard, C. R., Nemitz, E., Twigg, M., Erisman, J. W., & Galloway, J. N. (2015). Effects of global change during the 21st century on the nitrogen cycle. Atmospheric Chemistry and Physics, 15(24), 13849-13893. doi:10.5194/acp-15-13849-2015.


引用: https://hdl.handle.net/11858/00-001M-0000-0024-9BFD-7
要旨
The global nitrogen (N) cycle at the beginning of the 21st century has been shown to be strongly influenced by the inputs of reactive nitrogen (Nr) from human activities, estimated to be 193 Tg N yr−1 in 2010 which is approximately equal to the sum of biological N fixation in terrestrial and marine ecosystems. According to current trajectories, changes in climate and land use during the 21st century will increase both biological and anthropogenic fixation, bringing the total to approximately 600 Tg N yr−1 by around 2100. The fraction contributed directly by human activities is unlikely to increase substantially if increases in nitrogen use efficiency in agriculture are achieved and control measures on combustion related emissions implemented. Some N cycling processes emerge as particularly sensitive to climate change. One of the largest responses to climate in the processing of Nr is the emission to the atmosphere of NH3, which is estimated to increase from 65 Tg N yr−1 in 2008 to 93 Tg N yr−1 in 2100 assuming a change in surface temperature of 5 °C even in the absence of increased anthropogenic activity. With changes in emissions in response to increased demand for animal products the combined effect would be to increase NH3 emissions to 132 Tg N yr−1. Another major change is the effect of changes in aerosol composition combined with changes in temperature. Inorganic aerosols over the polluted regions especially in Europe and North America were dominated by (NH4)2SO4 in the 1970s to 1980s, and large reductions in emissions of SO2 have removed most of the SO42- from the atmosphere in these regions. Inorganic aerosols from anthropogenic emissions are now dominated by NH4NO3, a volatile aerosol which contributes substantially to PM10 and human health effects globally as well as eutrophication and climate effects. The volatility of NH4NO3 and rapid dry deposition of the vapour phase dissociation products, HNO3 and NH3, is estimated to be reducing the transport distances, deposition footprints and inter-country exchange of Nr in these regions. There have been important policy initiatives on components of the global N cycle. For the most part they have been regional or country-based and have delivered substantial reductions of inputs of Nr to sensitive soils, waters and the atmosphere. However, considering the magnitude of global Nr use, potential future increases, and the very large leakage of Nr in many forms to soils, waters and the atmosphere, there is a very long way to go before evidence for recovery from the effects of Nr deposition on sensitive ecosystems, or a decline in N2O emissions to the global atmosphere are likely to be detected. Such changes would require substantial improvements in nitrogen use efficiency across the global economy combined with optimisation of transport and food consumption patterns. This would allow reductions in Nr use, inputs to the atmosphere and deposition to sensitive ecosystems. Such changes would offer substantial economic and environmental co-benefits which could help motivate the necessary actions.