日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem

MPS-Authors
/persons/resource/persons92286

Borst,  J. Gerard G.
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95089

Sakmann,  Bert
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

External Resource

http://www.jstor.org/stable/pdfplus/56795.pdf
(全文テキスト(全般))

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Borst, J. G. G., & Sakmann, B. (1999). Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 354(1381), 347-355. Retrieved from http://www.jstor.org/stable/56795.


引用: https://hdl.handle.net/11858/00-001M-0000-0024-9C25-5
要旨
We studied the relation between the size of presynaptic calcium influx and transmitter release by making simultaneous voltage clamp recordings from presynaptic terminals, the calyces of Held and postsynaptic cells, the principal cells of the medical nucleus of the trapezoid body, in slices of the rat brainstem. Calyces were voltage clamped with different action potential waveforms. The amplitude of the excitatory postsynaptic currents depended supralinearly on the size of the calcium influx, in the absence of changes in the time−course of the calcium influx. This result is in agreement with the view that at this synapse most vesicles are released by the combined action of multiple calcium channels