Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex

MPG-Autoren
/persons/resource/persons92766

Egger,  Veronica
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons92876

Feldmeyer,  Dirk
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95089

Sakmann,  Bert
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Egger, V., Feldmeyer, D., & Sakmann, B. (1999). Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex. Nature Neuroscience, 2(12), 1098-1105. doi:10.1038/16026.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0024-9C62-C
Zusammenfassung
Paired whole-cell voltage recordings were made from synaptically connected spiny stellate neurons in layer 4 of the barrel field in young (P14) rat somatosensory cortex. When postsynaptic action potentials (APs) followed each of 5 presynaptic APs in a 10- or 20-Hz train by less than 25 ms, subsequent unitary EPSP amplitudes were persistently reduced. Induction of long-term depression (LTD) depended on activation of group II metabotropic glutamate receptors, but not on NMDA or AMPA receptors. Reducing postsynaptic increases in intracellular calcium ([Ca2+]i) by intracellular loading with a fast- (BAPTA) or a slow- (EGTA) acting Ca2+ buffer blocked synaptic depression. Analysis of EPSP failures suggested mediation of LTD by a reduction in release probability. We propose a mechanism by which coincident activity results in long-lasting reduction of synaptic efficacy between synaptically connected neurons