日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single barrel of developing rat somatosensory cortex

MPS-Authors
/persons/resource/persons92876

Feldmeyer,  Dirk
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons92766

Egger,  Veronica
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95089

Sakmann,  Bert
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Feldmeyer, D., Egger, V., Lübke, J. H. R., & Sakmann, B. (1999). Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single barrel of developing rat somatosensory cortex. The Journal of Physiology - London, 521(1), 169-190. doi:0.1111/j.1469-7793.1999.00169.x.


引用: https://hdl.handle.net/11858/00-001M-0000-0024-9CBF-B
要旨
1. Dual whole-cell recordings were made from pairs of synaptically coupled excitatory neurones in the 'barrel field' in layer (L) 4 in slices of young (postnatal day 12-15) rat somatosensory cortex. The majority of interconnected excitatory neurones were spiny stellate cells with an asymmetrical dendritic arborisation largely confined to a single barrel. The remainder were star pyramidal cells with a prominent apical dendrite terminating in L2/3 without forming a tuft. 2. Excitatory synaptic connections were examined between 131 pairs of spiny L4 neurones. Single presynaptic action potentials evoked unitary EPSPs with a peak amplitude of 1.59 +/- 1.51 mV (mean +/- s. d.), a latency of 0.92 +/- 0.35 ms, a rise time of 1.53 +/- 0.46 ms and a decay time constant of 17.8 +/- 6.3 ms. 3. At 34-36 C, the coefficient of variation (c.v.) of the unitary EPSP amplitude was 0. 37 +/- 0.16 and the percentage of failures to evoke an EPSP was 5.3 +/- 7.8 %. The c.v. and failure rate decreased with increasing amplitude of the unitary EPSP. 4. Postsynaptic glutamate receptors in spiny L4 neurones were of the AMPA and NMDA type. At -60 mV in the presence of 1 mM Mg2+, NMDA receptors contributed 39.3 +/- 12.5 % to the EPSP integral. In Mg2+-free solution, the NMDA receptor/AMPA receptor ratio of the EPSC was 0.86 +/- 0.64. 5. The number of putative synaptic contacts established by the projection neurone with the target neurone varied between two and five with a mean of 3.4 +/- 1.0 (n = 11). Synaptic contacts were exclusively found in the barrel in which the cell pair was located and were preferentially located on secondary to quarternary dendritic branches. Their mean geometric distance from the soma was 68.8 +/- 37.4 microm (range, 33.4-168.0 microm). The number of synaptic contacts and mean EPSP amplitude showed no significant correlation. 6. The results suggest that in L4 of the barrel cortex synaptic transmission between spiny neurones is largely restricted to a single barrel. The connections are very reliable, probably due to a high release probability, and have a high efficacy because of the compact structure of the dendrites and axons of spiny neurones. Intrabarrel connections thus function to amplify and distribute the afferent thalamic activity in the vertical directions of a cortical column.