Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Intercomparisons of Antarctic sea ice types from visual ship, RADARSAT-1 SAR, Envisat ASAR, QuikSCAT, and AMSR-E satellite observations in the Bellingshausen Sea

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ozsoy-Cicek, B., Kern, S., Ackley, S. F., Xie, H., & Tekeli, A. E. (2011). Intercomparisons of Antarctic sea ice types from visual ship, RADARSAT-1 SAR, Envisat ASAR, QuikSCAT, and AMSR-E satellite observations in the Bellingshausen Sea. Deep-Sea Research Part II-Topical Studies in Oceanography, 58(9-10), 1092-1111. doi:10.1016/j.dsr2.2010.10.031.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0024-9F2B-1
Zusammenfassung
Antarctic Sea Ice Processes and Climate (ASPeCt) visual ship-based observations were conducted in the Bellingshausen Sea during the Sea Ice Mass Balance in the Antarctic (SIMBA) cruise in austral spring 2007. A total of 59 ASPeCt observations are compared to coincident satellite active and passive microwave data. Envisat and RADARSAT-1 C-Band HH-polarization radar backscatter values (called NRCS henceforth) are derived on km-scales for six individual ice types and ice type mixtures. C-Band HH-polarized and Ku-Band VV-polarized NRCS are extracted on several 10 km-scale areas from coincident Envisat, RADARSAT-1, and QuikSCAT radar images for areas primarily covered with multiyear, deformed first-year, and undeformed young ice, as well as ice of the marginal ice zone (MIZ). The C-Band NRCS permits distinction between first-year, MIZ, and undeformed young ice. However, NRCS of the multiyear ice zone overlaps with that of the other ice zones and types. Ku-Band NRCS obtained for the same ice types permits discrimination of the first-year ice zone only. Obtained NRCS agree with those of previous studies and suggest a high degree of deformation and considerable potential for flooding for the first-year ice case. In comparison to large scale NRCS, AMSR-E snow depth values form two clearly separated clusters, one for 0.24–0.35 m depth (first-year ice zone) and one for 0.36–0.54 m depth (multiyear ice zone). However, a comparison to ASPeCt observations suggests a remarkable underestimation of the snow depth by AMSR-E in the multiyear–first-year-ice transition zone and for first-year cake ice. Nevertheless, a fusion of the coarse AMSR-E snow depth ranges for interior pack ice regions with radar imagery at large scale, appears promising for mapping the major zones (MIZ and Pack Ice) and ice types (first-year and multiyear) of Antarctic sea ice on a circumpolar basis.