Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Hough-based Object Detection with Grouped Features

MPG-Autoren
/persons/resource/persons85108

Srikantha,  Abhilash
Dept. Perceiving Systems, Max Planck Institute for Intelligent Systems, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Srikantha, A., & Gall, J. (2014). Hough-based Object Detection with Grouped Features. In 2014 IEEE International Conference on Image Processing (ICIP) (pp. 1653-1657). IEEE.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0024-E3A9-C
Zusammenfassung
Hough-based voting approaches have been successfully applied to object detection. While these methods can be efficiently implemented by random forests, they estimate the probability for an object hypothesis for each feature independently. In this work, we address this problem by grouping features in a local neighborhood to obtain a better estimate of the probability. To this end, we propose oblique classification-regression forests that combine features of different trees. We further investigate the benefit of combining independent and grouped features and evaluate the approach on RGB and RGB-D datasets.