Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Magnetism in Single Metalloorganic Complexes Formed by Atom Manipulation


Loth,  S.
Dynamics of Nanoelectronic Systems, Independent Research Groups, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
IBM Research Division, Almaden Research Center, San Jose;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Choi, T., Badal, M., Loth, S., Yoo, J.-W., Lutz, C. P., Heinrich, A. J., et al. (2014). Magnetism in Single Metalloorganic Complexes Formed by Atom Manipulation. Nano Letters, 14(3), 1196-1201. doi:10.1021/nl404054v.

Cite as: http://hdl.handle.net/11858/00-001M-0000-0024-BDEA-B
The magnetic properties of molecular structures can be tailored by chemical synthesis or bottom-up assembly at the atomic scale. We used scanning tunneling microscopy to study charge and spin transfer in individual complexes of transition metals with the charge acceptor, tetracyanoethylene (TCNE). The complexes were formed on a thin insulator, Cu2N on Cu(100), by manipulation of individual atoms and molecules. The Cu2N layer decouples the complexes from Cu electron density, enabling direct imaging of the TCNE molecular orbitals as well as spin-flip inelastic electron tunneling spectroscopy. Results were obtained at low temperature down to 1 K and in magnetic fields up to 7 T in order to resolve splitting of spin states in the complexes. We also performed spin-polarized density functional theory calculations to compare with the experimental data. Our results indicate that charge transfer to TCNE leads to a change in spin magnitude, Kondo resonance, and magnetic anisotropy for the metal atoms.