Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Neutrophil-related factors as biomarkers in EAE and MS


Krishnamoorthy,  Gurumoorthy
Emeritus Group: Neuroimmunology / Wekerle, MPI of Neurobiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Rumble, J. M., Huber, A. K., Krishnamoorthy, G., Srinivasan, A., Giles, D. A., Zhang, X., et al. (2015). Neutrophil-related factors as biomarkers in EAE and MS. Journal of Experimental Medicine, 212(1), 23-35. doi:10.1084/jem.20141015.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-C485-5
A major function of T helper (Th) 17 cells is to induce the production of factors that activate and mobilize neutrophils. Although Th17 cells have been implicated in the pathogenesis of multiple sclerosis (MS) and the animal model experimental autoimmune encephalomyelitis (EAE), little attention has been focused on the role of granulocytes in those disorders. We show that neutrophils, as well as monocytes, expand in the bone marrow and accumulate in the circulation before the clinical onset of EAE, in response to systemic upregulation of granulocyte colony-stimulating factor (G-CSF) and the ELR+ CXC chemokine CXCL1. Neutrophils comprised a relatively high percentage of leukocytes infiltrating the central nervous system (CNS) early in disease development. G-CSF receptor deficiency and CXCL1 blockade suppressed myeloid cell accumulation in the blood and ameliorated the clinical course of mice that were injected with myelin-reactive Th17 cells. In relapsing MS patients, plasma levels of CXCL5, another ELR+ CXC chemokine, were elevated during acute lesion formation. Systemic expression of CXCL1, CXCL5, and neutrophil elastase correlated with measures of MS lesion burden and clinical disability. Based on these results, we advocate that neutrophil-related molecules be further investigated as novel biomarkers and therapeutic targets in MS.