English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Die Elektrochemie des Sauerstoffs als Meilenstein für eine nachhaltige Energieumwandlung

MPS-Authors
/persons/resource/persons125209

Katsounaros,  Ioannis
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125087

Cherevko,  Serhiy
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125495

Žeradjanin,  Aleksandar R.
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125274

Mayrhofer,  Karl J. J.
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Katsounaros, I., Cherevko, S., Žeradjanin, A. R., & Mayrhofer, K. J. J. (2014). Die Elektrochemie des Sauerstoffs als Meilenstein für eine nachhaltige Energieumwandlung. Angewandte Chemie, 126(1), 104-124. doi:10.1002/anie.201306588.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-C9BB-3
Abstract
Elektrochemie wird eine entscheidende Rolle bei der Einführung von nachhaltigen Lösungen zur Energieversorgung spielen, besonders im Bereich der Umwandlung und Speicherung von elektrischer in chemische Energie in Elektrolysezellen sowie bei der Rückumwandlung und Verwendung der gespeicherten Energie in galvanischen Zellen. Die gemeinsame Herausforderung für beide Prozesse ist die Entwicklung von – bevorzugt leicht verfügbaren – nanostrukturierten Materialien, die diese elektrochemischen Reaktionen mit einem hohen Umsatz und über einen genügend langen Zeitraum katalysieren können. Für die gezielte Entwicklung von Materialien, die diese Voraussetzungen erfüllen, ist es notwendig, die zugrunde liegenden Prozesse und Mechanismen, die unter realen Bedingungen auftreten, vollständig zu verstehen. Eine vielversprechende Strategie, um dieses Verständnis zu erreichen, besteht in der Untersuchung des Einflusses der Materialeigenschaften auf die Aktivität oder Selektivität der Reaktion und die Stabilität unter Anwendungsbedingungen sowie in der Verwendung von komplementären In-situ-Techniken zur Untersuchung der Katalysatorstruktur und -zusammensetung.