English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Carbon-based yolk-shell materials for fuel cell applications

MPS-Authors
/persons/resource/persons58560

Galeano Nuñez,  Diana Carolina
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons125037

Baldizzone,  Claudio
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons58443

Bongard,  Hans-Josef
Service Department Lehmann (EMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59011

Spliethoff,  Bernd
Service Department Lehmann (EMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59100

Weidenthaler,  Claudia
Research Group Weidenthaler, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons125275

Meier,  Josef Christian
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125274

Mayrhofer,  Karl Johann Jakob
Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons58985

Schüth,  Ferdi
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Galeano Nuñez, D. C., Baldizzone, C., Bongard, H.-J., Spliethoff, B., Weidenthaler, C., Meier, J. C., et al. (2014). Carbon-based yolk-shell materials for fuel cell applications. Advanced Functional Materials, 24(2), 220-232. doi:10.1002/adfm.201302239.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-CBEF-1
Abstract
The synthesis of yolk–shell catalysts, consisting of platinum or gold–platinum cores and graphitic carbon shells, and their electrocatalytic stabilities are described. Different encapsulation pathways for the metal nanoparticles are explored and optimized. Electrochemical studies of the optimized AuPt, @C catalyst revealed a high stability of the encapsulated metal particles. However, in order to reach full activity, several thousand potential cycles are required. After the electrochemical surface area is fully developed, the catalysts show exceptionally high stability, with almost no degradation over approximately 30 000 potential cycles between 0.4 and 1.4 VRHE.