User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

Presynaptic inhibition of elicited neurotransmitter release


Wu,  Ling-Gang
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

Wu, L.-G., & Saggau, P. (1997). Presynaptic inhibition of elicited neurotransmitter release. Trends in Neurosciences, 20(5), 204-212. doi:10.1016/S0166-2236(96)01015-6.

Cite as: http://hdl.handle.net/11858/00-001M-0000-0024-CEFF-0
Activation of presynaptic receptors for a variety of neurotransmitters and neuromodulators inhibits transmitter release at many synapses. Such presynaptic inhibition might serve as a means of adjusting synaptic strength or preventing excessive transmitter release, or both. Previous evidence showed that presynaptic modulators inhibit Ca2+ channels and activate K+ channels at neuronal somata. These modulators also inhibit spontaneous transmitter release by mechanisms downstream of Ca2+ entry. The relative contribution of the above mechanisms to the inhibition of elicited release has been debated for a long time. Recent evidence at synapses where the relationship between transmitter release and presynaptic Ca2+ influx has been well characterized suggests that inhibition of presynaptic voltage-dependent Ca2+ channels plays the major role in presynaptic inhibition of elicited neurotransmitter release. In addition, modulation of the release machinery might contribute to inhibition of elicited release