English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Multi-Task Feature Selection on Multiple Networks via Maximum Flows

MPS-Authors
/persons/resource/persons85217

Azencott,  C.-A.
Research Group Machine Learning and Computational Biology, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons118781

Grimm,  D.
Dept. Empirical Inference, Max Planck Institute for Intelligent System, Max Planck Society;

/persons/resource/persons75313

Borgwardt,  K. M.
Research Group Machine Learning and Computational Biology, Max Planck Institute for Intelligent Systems, Max Planck Society;

Locator

Link
(Any fulltext)

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Sugiyama, M., Azencott, C.-A., Grimm, D., Kawahara, Y., & Borgwardt, K. M. (2014). Multi-Task Feature Selection on Multiple Networks via Maximum Flows. In M. Zaki (Ed.), Proceedings of the 2014 SIAM International Conference on Data Mining (pp. 199-207). Society for Industrial and Applied Mathematics (SIAM). doi:10.1137/1.9781611973440.23.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0025-BC05-1
Abstract
There is no abstract available