English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Multi-Task Feature Selection on Multiple Networks via Maximum Flows

MPS-Authors
/persons/resource/persons85217

Azencott,  C.-A.
Research Group Machine Learning and Computational Biology, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons118781

Grimm,  D.
Dept. Empirical Inference, Max Planck Institute for Intelligent System, Max Planck Society;

/persons/resource/persons75313

Borgwardt,  K. M.
Research Group Machine Learning and Computational Biology, Max Planck Institute for Intelligent Systems, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sugiyama, M., Azencott, C.-A., Grimm, D., Kawahara, Y., & Borgwardt, K. M. (2014). Multi-Task Feature Selection on Multiple Networks via Maximum Flows. In M. Zaki (Ed.), Proceedings of the 2014 SIAM International Conference on Data Mining (pp. 199-207). Society for Industrial and Applied Mathematics (SIAM). doi:10.1137/1.9781611973440.23.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0025-BC05-1
Abstract
There is no abstract available