English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Microprocessor activity controls differential miRNA biogenesis In Vivo

MPS-Authors
/persons/resource/persons144853

Conrad,  Thomas
Long non-coding RNA (Ulf Andersson Ørom), Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50424

Marsico,  Annalisa
Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons144855

Gehre,  Maja
Long non-coding RNA (Ulf Andersson Ørom), Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons73949

Ørom,  Ulf Andersson
Long non-coding RNA (Ulf Andersson Ørom), Independent Junior Research Groups (OWL), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Conrad.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Conrad, T., Marsico, A., Gehre, M., & Ørom, U. A. (2014). Microprocessor activity controls differential miRNA biogenesis In Vivo. Cell Reports, 9(2), 542-554. doi:10.1016/j.celrep.2014.09.007.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0025-0BA5-B
Abstract
In miRNA biogenesis, pri-miRNA transcripts are converted into pre-miRNA hairpins. The in vivo properties of this process remain enigmatic. Here, we determine in vivo transcriptome-wide pri-miRNA processing using next-generation sequencing of chromatin-associated pri-miRNAs. We identify a distinctive Microprocessor signature in the transcriptome profile from which efficiency of the endogenous processing event can be accurately quantified. This analysis reveals differential susceptibility to Microprocessor cleavage as a key regulatory step in miRNA biogenesis. Processing is highly variable among pri-miRNAs and a better predictor of miRNA abundance than primary transcription itself. Processing is also largely stable across three cell lines, suggesting a major contribution of sequence determinants. On the basis of differential processing efficiencies, we define functionality for short sequence features adjacent to the pre-miRNA hairpin. In conclusion, we identify Microprocessor as the main hub for diversified miRNA output and suggest a role for uncoupling miRNA biogenesis from host gene expression.