English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

CD74-NRG1 Fusions in Lung Adenocarcinoma

MPS-Authors
/persons/resource/persons50587

Sun,  R.
Gene Structure and Array Design (Stefan Haas), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50613

Vingron,  M.
Gene regulation (Martin Vingron), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50183

Haas,  S. A.
Gene Structure and Array Design (Stefan Haas), Dept. of Computational Molecular Biology (Head: Martin Vingron), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Fernandez-Cuesta, L., Plenker, D., Osada, H., Sun, R., Menon, R., Leenders, F., et al. (2014). CD74-NRG1 Fusions in Lung Adenocarcinoma. Cancer Discovery, 4(4), 415-422. doi:10.1158/2159-8290.CD-13-0633.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0025-1F8A-6
Abstract
We discovered a novel somatic gene fusion, CD74-NRG1, by transcriptome sequencing of 25 lung adenocarcinomas of never smokers. By screening 102 lung adenocarcinomas negative for known oncogenic alterations, we found four additional fusion-positive tumors, all of which were of the invasive mucinous subtype. Mechanistically, CD74-NRG1 leads to extracellular expression of the EGF-like domain of NRG1 III-beta3, thereby providing the ligand for ERBB2-ERBB3 receptor complexes. Accordingly, ERBB2 and ERBB3 expression was high in the index case, and expression of phospho-ERBB3 was specifically found in tumors bearing the fusion (P < 0.0001). Ectopic expression of CD74-NRG1 in lung cancer cell lines expressing ERBB2 and ERBB3 activated ERBB3 and the PI3K-AKT pathway, and led to increased colony formation in soft agar. Thus, CD74-NRG1 gene fusions are activating genomic alterations in invasive mucinous adenocarcinomas and may offer a therapeutic opportunity for a lung tumor subtype with, so far, no effective treatment. SIGNIFICANCE: CD74-NRG1 fusions may represent a therapeutic opportunity for invasive mucinous lung adenocarcinomas, a tumor with no effective treatment that frequently presents with multifocal unresectable disease.