English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Synthesis, structural characterization and biological activity of two diastereomeric JA-Ile macrolactones

MPS-Authors
/persons/resource/persons41502

Jimenez-Aleman,  Guillermo Hugo
Department of Bioorganic Chemistry, Prof. Dr. W. Boland, MPI for Chemical Ecology, Max Planck Society;
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons98163

Machado,  Ricardo A. R.
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3786

Baldwin,  Ian Thomas
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3812

Boland,  Wilhelm
Department of Bioorganic Chemistry, Prof. Dr. W. Boland, MPI for Chemical Ecology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
Citation

Jimenez-Aleman, G. H., Machado, R. A. R., Görls, H., Baldwin, I. T., & Boland, W. (2015). Synthesis, structural characterization and biological activity of two diastereomeric JA-Ile macrolactones. Organic & Biomolecular Chemistry, 13(21), 5885-5893. doi:10.1039/C5OB00362H.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0025-6861-8
Abstract
Jasmonates are phytohormones involved in a wide range of plant processes, including growth, development, senescence, and defense. Jasmonoyl-L-isoleucine (JA-Ile, 2), an amino acid conjugate of jasmonic acid (JA, 1), has been identified as a bioactive endogenous jasmonate. However, JA-Ile (2) analogues trigger different responses in the plant. ω-Hydroxylation of the pentenyl side chain leads to the inactive 12-OH-JA-Ile (3) acting as a “stop” signal. On the other hand, a lactone derivative of 12-OH-JA (5) (jasmine ketolactone, JKL) occurs in nature, although with no known biological function. Inspired by the chemical structure of JKL (6) and in order to further explore the potential biological activities of 12-modified JA-Ile derivatives, we synthesized two macrolactones (JA-Ile-lactones (4a) and (4b)) derived from 12-OH-JA-Ile (3). The biological activity of (4a) and (4b) was tested for their ability to elicit nicotine production, a well-known jasmonate dependent secondary metabolite. Both macrolactones showed strong biological activity, inducing nicotine accumulation to a similar extent as methyl jasmonate does in Nicotiana attenuata leaves. Surprisingly, the highest nicotine contents were found in plants treated with the JA-Ile-lactone (4b), which has (3S,7S) configuration at the cyclopentanone not known from natural jasmonates. Macrolactone (4a) is a valuable standard to explore for its occurrence in nature.