Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Linear Integer Arithmetic Revisited

MPG-Autoren
/persons/resource/persons117832

Bromberger,  Martin
Automation of Logic, MPI for Informatics, Max Planck Society;

/persons/resource/persons73108

Sturm,  Thomas
Automation of Logic, MPI for Informatics, Max Planck Society;

/persons/resource/persons45719

Weidenbach,  Christoph
Automation of Logic, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

arXiv:1503.02948.pdf
(Preprint), 372KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bromberger, M., Sturm, T., & Weidenbach, C. (2015). Linear Integer Arithmetic Revisited. Retrieved from http://arxiv.org/abs/1503.02948.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0025-6937-4
Zusammenfassung
We consider feasibility of linear integer programs in the context of verification systems such as SMT solvers or theorem provers. Although satisfiability of linear integer programs is decidable, many state-of-the-art solvers neglect termination in favor of efficiency. It is challenging to design a solver that is both terminating and practically efficient. Recent work by Jovanovic and de Moura constitutes an important step into this direction. Their algorithm CUTSAT is sound, but does not terminate, in general. In this paper we extend their CUTSAT algorithm by refined inference rules, a new type of conflicting core, and a dedicated rule application strategy. This leads to our algorithm CUTSAT++, which guarantees termination.