English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains.

MPS-Authors
/persons/resource/persons41506

Milovanovic,  D.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons40292

Honigmann,  A.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons96560

Göttfert,  F.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15155

Grubmüller,  H.
Department of Theoretical and Computational Biophysics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons32615

Risselada,  H. J.
Department of Theoretical and Computational Biophysics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15024

Eggeling,  C.
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15210

Hell,  S. W.       
Department of NanoBiophotonics, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons14875

van den Bogaart,  G.
Department of Neurobiology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15266

Jahn,  R.
Department of Neurobiology, MPI for biophysical chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2111472.pdf
(Publisher version), 1002KB

Supplementary Material (public)

2111472_Suppl.pdf
(Supplementary material), 887KB

Citation

Milovanovic, D., Honigmann, A., Koike, S., Göttfert, F., Pahler, G., Junius, M., et al. (2015). Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains. Nature Communications, 6: 5984. doi:10.1038/ncomms6984.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0025-6C39-A
Abstract
The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein-protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes.