English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Molecular Basis for SMC Rod Formation and Its Dissolution upon DNA Binding

MPS-Authors
/persons/resource/persons101905

Bürmann,  Frank
Gruber, Stephan / Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons145226

Toseland,  Christopher P.
Gruber, Stephan / Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons145229

Durand-Diebold,  Marie-Laure
Gruber, Stephan / Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78036

Gruber,  Stephan
Gruber, Stephan / Chromosome Organization and Dynamics, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Soh, Y.-M., Bürmann, F., Shin, H.-C., Oda, T., Jin, K. S., Toseland, C. P., et al. (2015). Molecular Basis for SMC Rod Formation and Its Dissolution upon DNA Binding. MOLECULAR CELL, 57(2), 290-303. doi:10.1016/j.molcel.2014.11.023.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0025-73E3-4
Abstract
SMC condensin complexes are central modulators of chromosome superstructure in all branches of life. Their SMC subunits form a long intramolecular coiled coil, which connects a constitutive "hinge'' dimerization domain with an ATP-regulated "head'' dimerization module. Here, we address the structural arrangement of the long coiled coils in SMC complexes. We unequivocally show that prokaryotic Smc-ScpAB, eukaryotic condensin, and possibly also cohesin form rod-like structures, with their coiled coils being closely juxtaposed and accurately anchored to the hinge. Upon ATP-induced binding of DNA to the hinge, however, Smc switches to a more open configuration. Our data suggest that a long-distance structural transition is transmitted from the Smc head domains to regulate Smc-ScpAB's association with DNA. These findings uncover a conserved architectural theme in SMC complexes, provide a mechanistic basis for Smc's dynamic engagement with chromosomes, and offer a molecular explanation for defects in Cornelia de Lange syndrome.