English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

PtCl2-Catalyzed Rearrangement of Methylenecyclopropanes

MPS-Authors
/persons/resource/persons58380

Fürstner,  A.
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58387

Aïssa,  Christophe
Research Department Fürstner, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

ja061392ysi20060407_024446.pdf
(Supplementary material), 3MB

Citation

Fürstner, A., & Aïssa, C. (2006). PtCl2-Catalyzed Rearrangement of Methylenecyclopropanes. Journal of the American Chemical Society, 128(19), 6306-6307. doi:10.1021/ja061392y.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0025-AE1E-B
Abstract
Alkylidenecyclopropanes readily convert into cyclobutene derivatives on treatment with catalytic amounts of PtCl2. The reaction is strongly accelerated when performed under an atmosphere of CO (1 atm). The resulting cyclobutenes are isolated in good to excellent yields for substrates bearing aliphatic as well as aromatic substituents R on their olefinic site. If the substituent R, however, is a very electron-rich arene, the cyclobutenes initially formed react further to give dimeric products with a previously unknown 1,2,2a,7a-tetrahydrospiro[cyclobuta[a]indene-7,1‘-cyclobutane skeleton. A mechanism accounting for these experimental observations as well as for a deuterium-labeling experiment is proposed which implies reactive intermediates at the nonclassical cation/carbene interface. Furthermore it is shown that the PtCl2-catalyzed cyclobutene formation can be geared with subsequent ring-opening/ring-closing metathesis (ROM/RCM) events. Finally, a convenient “one pot” method for the preparation of the alkylidenecyclopropane substrates used in this study is presented, which is based on a modified Julia−Kocienski olefination of aldehydes with readily available 1-tert-butyl-1H-tetrazol-5-yl-cyclopropyl sulfone under Barbier conditions.