English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A 3-base pair deletion, c.9711_9713del, in DMD results in intellectual disability without muscular dystrophy

MPS-Authors
/persons/resource/persons50123

Chen,  W.
Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50314

Hu,  H.
Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50369

Kalscheuer,  V. M.
Chromosome Rearrangements and Disease (Vera Kalscheuer), Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

de Brouwer.pdf
(Publisher version), 1008KB

Supplementary Material (public)
There is no public supplementary material available
Citation

de Brouwer, A. P., Nabuurs, S. B., Verhaart, I. E., Oudakker, A. R., Hordijk, R., Yntema, H. G., et al. (2014). A 3-base pair deletion, c.9711_9713del, in DMD results in intellectual disability without muscular dystrophy. European journal of human genetics, 22(4), 480-485. doi:10.1038/ejhg.2013.169.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0025-C2BC-9
Abstract
We have identified a deletion of 3 base pairs in the dystrophin gene (DMD), c.9711_9713del, in a family with nonspecific X-linked intellectual disability (ID) by sequencing of the exons of 86 known X-linked ID genes. This in-frame deletion results in the deletion of a single-amino-acid residue, Leu3238, in the brain-specific isoform Dp71 of dystrophin. Linkage analysis supported causality as the mutation was present in the 7.6 cM linkage interval on Xp22.11-Xp21.1 with a maximum positive LOD score of 2.41 (MRX85 locus). Molecular modeling predicts that the p.(Leu3238del) deletion results in the destabilization of the C-terminal domain of dystrophin and hence reduces the ability to interact with beta-dystroglycan. Correspondingly, Dp71 protein levels in lymphoblastoid cells from the index patient are 6.7-fold lower than those in control cell lines (P=0.08). Subsequent determination of the creatine kinase levels in blood of the index patient showed a mild but significant elevation in serum creatine kinase, which is in line with impaired dystrophin function. In conclusion, we have identified the first DMD mutation in Dp71 that results in ID without muscular dystrophy.