English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

NDST1 missense mutations in autosomal recessive intellectual disability

MPS-Authors
/persons/resource/persons50439

Musante,  L.
Familial Cognitive Disorders (Luciana Musante), Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50314

Hu,  H.
Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons129894

Wienker,  T. F.
Clinical Genetics (Thomas F. Wienker), Dept. of Human Molecular Genetics (Head: Hans-Hilger Ropers), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Reuter.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Reuter, M. S., Musante, L., Hu, H., Diederich, S., Sticht, H., Ekici, A. B., et al. (2014). NDST1 missense mutations in autosomal recessive intellectual disability. American Journal of Medical Genetics Part A, 164A(11), 2753-2763. doi:10.1002/ajmg.a.36723.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0025-C0DE-D
Abstract
NDST1 was recently proposed as a candidate gene for autosomal recessive intellectual disability in two families. It encodes a bifunctional GlcNAc N-deacetylase/N-sulfotransferase with important functions in heparan sulfate biosynthesis. In mice, Ndst1 is crucial for embryonic development and homozygous null mutations are perinatally lethal. We now report on two additional unrelated families with homozygous missense NDST1 mutations. All mutations described to date predict the substitution of conserved amino acids in the sulfotransferase domain, and mutation modeling predicts drastic alterations in the local protein conformation. Comparing the four families, we noticed significant overlap in the clinical features, including both demonstrated and apparent intellectual disability, muscular hypotonia, epilepsy, and postnatal growth deficiency. Furthermore, in Drosophila, knockdown of sulfateless, the NDST ortholog, impairs long-term memory, highlighting its function in cognition. Our data confirm NDST1 mutations as a cause of autosomal recessive intellectual disability with a distinctive phenotype, and support an important function of NDST1 in human development.