English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Electronic, magnetic, and transport properties of the isotypic aluminides SmT2Al10 (T = Fe, Ru)

MPS-Authors
/persons/resource/persons126866

Strydom,  A. M.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Peratheepan, P., & Strydom, A. M. (2015). Electronic, magnetic, and transport properties of the isotypic aluminides SmT2Al10 (T = Fe, Ru). Journal of Physics: Condensed Matter, 27(9): 095604, pp. 1-12. doi:10.1088/0953-8984/27/9/095604.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0026-A37A-6
Abstract
We report the results of a comprehensive physical and magnetic property study of the new isotypic aluminides SmT2Al10 (T = Fe, Ru). These two compounds are members of a rare-earth based system which has become an exemplary case study of the interplay of magnetism and correlated electron phenomena. SmFe2Al10 and SmRu2Al10 are found to order in a putative antiferromagnetic spin arrangement at T-N = 14.5 K and 12.5 K, respectively. Moreover, SmRu2Al10 shows a further phase transition at T-SR = 5 K which is likely due to spin reorientation. The susceptibility of SmFe2Al10 points to a valence instability of the Sm ionic state at intermediate temperatures well above T-N. Electronic and thermal transport confirm that SmFe2Al10 undergoes an antiferromagnetic superzone gap formation below T-N, whereas SmRu2Al10 suffers a lattice anomaly driven magnetoelastic coupling at T-N. Below T-N, the physical properties of SmT2Al10 (T = Fe, Ru) are governed by magnons with an antiferromagnetic spin-wave spectrum that reveals spin-gap opening. Our findings in this work have exposed a new anomalous correlated compound in the RT2Al10 series. SmFe2Al10 has a magnetic ordered ground state in spite of an unstable valence at higher temperature. This is comparable with CeRu2Al10, which is a unique and controversial Kondo insulator that orders antiferromagnetic at T-N = 27 K. Among the series of rare-earth RT2Al10 compounds, the presented Sm compounds are two new members with anomalously high magnetic ordering temperatures, and it is envisaged that together with the two very well studied compounds CeRu2Al10 and CeOs2Al10 our presented studies will enable a broader approach towards understanding the fascinating properties of this materials class.