English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dynamics of Late Quaternary North African humid periods documented in the clay mineral record of central Aegean Sea sediments

MPS-Authors
There are no MPG-Authors available
Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Ehrmann, W., Seidel, M., & Schmiedl, G. (2013). Dynamics of Late Quaternary North African humid periods documented in the clay mineral record of central Aegean Sea sediments. Global and Planetary Change, 107, 186-195. doi:10.1016/j.gloplacha.2013.05.010.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0026-A403-A
Abstract
The ratio between the clay minerals kaolinite and chlorite has been investigated in high resolution in a late Quaternary sediment core from the central Aegean Sea. The record spans the last ca. 105 ka. The kaolinite/chlorite ratio was used to reconstruct the fine-grained aeolian dust influx from the North African deserts, mainly derived from desiccated lake depressions. It therewith can be used as a proxy for wind activity, aridity and vegetation cover in the source area. The data document three major humid phases in North Africa bracketing the formation of sapropel layers S4, S3 and S1. They occur at >105-95 ka, 83.5-72 ka and 14-2 ka. The first two phases are characterised by relatively abrupt lower and upper boundaries suggesting a non-linear response of vegetation to precipitation, with critical hydrological thresholds. In contrast, the onset and termination of the last humid period were more gradual. Highest kaolinite/chlorite ratios indicating strongest aeolian transport and aridity occur during Marine Isotope Stage (MIS) 5b, at ca. 95-84 ka. The long-term decrease in kaolinite/chlorite ratios during the last glacial period indicates a gradual decline of deflatable lake sediments in the source areas. (C) 2013 Elsevier B.V. All rights reserved.