Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Nitrogen isotope dynamics and fractionation during sedimentary denitrification in Boknis Eck, Baltic Sea

There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Dähnke, K., & Thamdrup, B. (2013). Nitrogen isotope dynamics and fractionation during sedimentary denitrification in Boknis Eck, Baltic Sea. Biogeosciences, 10(5), 3079-3088. doi:10.5194/bg-10-3079-2013.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0026-AC9F-8
The global marine nitrogen cycle is constrained by nitrogen fixation as a source of reactive nitrogen, and denitrification or anammox on the sink side. These processes with their respective isotope effects set the marine nitrate N-15-isotope value (delta N-15) to a relatively constant average of 5 parts per thousand. This value can be used to better assess the magnitude of these sources and sink terms, but the underlying assumption is that sedimentary denitrification and anammox, processes responsible for approximately one-third of global nitrogen removal, have little to no isotope effect on nitrate in the water column. We investigated the isotope fractionation in sediment incubations, measuring net denitrification and nitrogen and oxygen stable isotope fractionation in surface sediments from the coastal Baltic Sea (Boknis Eck, northern Germany), a site with seasonal hypoxia and dynamic nitrogen turnover. Sediment denitrification was fast, and regardless of current paradigms assuming little fractionation during sediment denitrification, we measured fractionation factors of 18.9 parts per thousand for nitrogen and 15.8 parts per thousand for oxygen in nitrate. While the input of nitrate to the water column remains speculative, these results challenge the current view of fractionation during sedimentary denitrification and imply that nitrogen budget calculations may need to consider this variability, as both preferential uptake of light nitrate and release of the remaining heavy fraction can significantly alter water column nitrate isotope values at the sediment-water interface.