English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Bolometer tomography at the density limit of the HDH mode in the W7-AS stellarator

MPS-Authors
/persons/resource/persons109170

Giannone,  L.
Experimental Plasma Physics 1 (E1), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons108767

Brakel,  R.
Experimental Plasma Physics 3 (E3), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons108825

Burhenn,  R.
VINETA, Max Planck Institute for Plasma Physics, Max Planck Society;
W7-AS, Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109011

Ehmler,  H.
Stellarator Scenario Development (E5), Max Planck Institute for Plasma Physics, Max Planck Society;
VINETA, Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109074

Feng,  Y.
W7-X: Theory, Max Planck Institute for Plasma Physics, Max Planck Society;
W7-AS, Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109226

Grigull,  P.
W7-X: Physics (PH), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109914

McCormick,  K.
Stellarator Scenario Development (E5), Max Planck Institute for Plasma Physics, Max Planck Society;
W7-AS, Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110725

Wagner,  F.
Experimental Plasma Physics 3 (E3), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109474

Igitkhanov,  Y.
Stellarator System Studies, Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110111

Pasch,  E.
Stellarator Optimisation (E3), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110034

Narayanan,  R.
Experimental Plasma Physics 4 (E4), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110298

Rust,  N.
W7-X: Heating (HT), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110770

Weller,  A.
Stellarator Scenario Development (E5), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110781

Werner,  A.
W7-X: Physics (PH), Max Planck Institute for Plasma Physics, Max Planck Society;

W7-AS Team, 
Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Giannone, L., Brakel, R., Burhenn, R., Ehmler, H., Feng, Y., Grigull, P., et al. (2003). Bolometer tomography at the density limit of the HDH mode in the W7-AS stellarator. Plasma Physics and Controlled Fusion, 45(9), 1713-1731. doi:10.1088/0741-3335/45/9/310.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0027-234D-2
Abstract
The installation of divertor plates in the W7-AS stellarator has allowed attainment of a high energy confinement regime at high density, where the radiation profiles reached steady state. In this regime, the radial profile of the radiated power is hollow. Raising the density to the point where the radiated power approached the input power led to plasma detachment and a decrease in diamagnetic energy. This defines the density limit in a stellarator and a scaling law for this maximum density can be heuristically derived on the basis of power balance considerations. The installation of two bolometer cameras away from the divertor plates and three bolometer cameras in the vicinity of the divertor plates has provided insight into the features of high density operation of a divertor in a stellarator. In the main chamber, tomographic inversion at the density limit has shown that a poloidally asymmetric radiation profile developed as the density limit was approached. In the divertor, radiation in front of the divertor plates occurred while the plasma was attached and this radiation zone vanished at plasma detachment. Steady state discharges of up to 1.5 s have been achieved for neutral beam injection power of up to 2 MW. A precursor to a spontaneous transition out of the high confinement regime has been identified.