English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Short and long range transport of materials eroded from wall components in fusion devices

MPS-Authors
/persons/resource/persons110791

Wienhold,  P.
Plasma Diagnostics Group (HUB), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109390

Hildebrandt,  D.
Plasma Diagnostics Group (HUB), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109910

Mayer,  M.
Material Research (MF), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110410

Schneider,  W.
Tokamak Theory (TOK), Max Planck Institute for Plasma Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wienhold, P., Philipps, V., Kirschner, A., Huber, A., von Seggern, J., Esser, H. G., et al. (2003). Short and long range transport of materials eroded from wall components in fusion devices. Journal of Nuclear Materials, 313-316, 311-320. doi:10.1016/S0022-3115(02)01347-8.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0027-2F3E-8
Abstract
Carbon sources and the sinks have been quantified in TEXTOR and are discussed in terms of short and long range transport. The major source (22 g/h) is the graphite belt limiter, but part (10 g/h) of the carbon is directly re-deposited after short range transport. Long range transport causes flake formation on obstacles and neutralisers, but little and deuterium rich (D/C≈0.7) deposition in remote areas. The rest is leaving via the pumps in gaseous form. This behaviour is different from that in JET where large amounts of deuterium rich deposits were found in the louvers. Tungsten is favoured for the ITER divertors because of its low sputtering yield for hydrogen, but melting and erosion by carbon may be an additional concern. The short range transport of tungsten has been investigated in a well defined experiment and quantitatively re-constructed by means of the ERO-TEXTOR code. Code validation is necessary in order to increase the confidence and the applicability to JET and ITER.