English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Theory-based modeling of particle transport in ASDEX Upgrade H-mode plasmas, density peaking, anomalous pinch and collisionality

MPS-Authors
/persons/resource/persons108574

Angioni,  C.
Tokamak Theory (TOK), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110124

Peeters,  A. G.
Tokamak Theory (TOK), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110134

Pereverzev,  G. V.
Tokamak Theory (TOK), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110299

Ryter,  F.
Tokamak Edge and Divertor Physics (E2), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110621

Tardini,  G.
Experimental Plasma Physics 1 (E1), Max Planck Institute for Plasma Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Angioni, C., Peeters, A. G., Pereverzev, G. V., Ryter, F., Tardini, G., & ASDEX Upgrade Team (2003). Theory-based modeling of particle transport in ASDEX Upgrade H-mode plasmas, density peaking, anomalous pinch and collisionality. Physics of Plasmas, 10(8), 3325-3239. doi:10.1063/1.1589009.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0027-3AB9-1
Abstract
The theoretical prediction of density profiles in tokamak plasmas plays a major role for the prediction of the plasma performance in a fusion reactor. The density peaking measured in plasmas in high confinement mode of the ASDEX Upgrade tokamak [O. Gruber, H.-S. Bosch, S. Günter et al., Nucl. Fusion 39, 1321 (1999)] is shown to decrease with increasing collisionality. This experimental behavior is explained with a theoretical fluid transport model for ion temperature gradient and trapped electron modes, GLF23, which includes a valid description of the effects of collisions on these instabilities. Collisionless reactive models, like the Weiland model, are in disagreement with the experimental observations. The difference between the predictions of the two models must be ascribed to collisionality. This has been ascertained by a detailed comparison of the physics content of the two models and by the implementation of modified, collisionless versions of the GLF23 model, which yield results analogous to those of the Weiland model and in disagreement with the experiment. It is shown that the anomalous particle pinch decreases with collisionality and the relative role of the neoclassical Ware pinch becomes important at high collisionality, that is close to the density limit in present large tokamak experiments, while it is practically negligible at low collisionality. The present results reconciliate apparently contradictory observations on the existence of an anomalous particle pinch collected so far in tokamaks.