English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Transient heat transport studies in JET conventional and advanced tokamak plasmas

MPS-Authors
/persons/resource/persons108992

Dux,  R.
Experimental Plasma Physics 4 (E4), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110109

Parail,  V.
Tokamak Theory (TOK), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110609

Suttrop,  W.
Experimental Plasma Physics 2 (E2), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110621

Tardini,  G.
Experimental Plasma Physics 1 (E1), Max Planck Institute for Plasma Physics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Mantica, P., Coffey, I., Dux, R., Garbet, X., Garzotti, L., Gorini, G., et al. (2003). Transient heat transport studies in JET conventional and advanced tokamak plasmas. In Fusion Energy 2002. Vienna: International Atomic Energy Agency.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0027-3C77-5
Abstract
Transient transport studies have long been recognised as a valuable complement to steady-state analysis for the understanding of transport mechanisms. Recently, transient transport data have proved to be a powerful tool to test the validity of physics-based transport models. In this paper, results from transient heat transport experiments in JET and their modelling will be presented. Edge cold pulses and modulation of ICRH (in Mode Conversion scheme) and NBI power have been used to provide detectable electron (Te) and ion (Ti) temperature perturbations. The experiments have been performed either in conventional plasma regimes or in Advanced Tokamak regimes, in the presence of an Internal Transport Barrier (ITB). In conventional plasmas issues such as stiffness, influence of Te/Ti, non-locality have been addressed. In ITB plasmas, insight into the physics of ITBs and the ITB formation mechanisms has been gained. The use of edge perturbations for ITB triggering has been explored. Modelling of the experimental results has been performed using both empirical models and physics-based models. Results of cold pulse experiments in ITBs have also been compared with turbulence simulations.