English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Edge localized mode physics and operational aspects in tokamaks

MPS-Authors
/persons/resource/persons110109

Parail,  V.
Tokamak Theory (TOK), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110868

Zastrow,  K.-D.
Experimental Plasma Physics 4 (E4), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons108854

Chankin,  A.
Tokamak Theory (TOK), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109017

Eich,  T.
Experimental Plasma Physics 1 (E1), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110520

Sips,  A.
Experimental Plasma Physics 1 (E1), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109446

Horton,  L.
Experimental Plasma Physics 1 (E1), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109363

Hermann,  A.
Plasma Diagnostics Group (HUB), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109762

Lang,  P.
Experimental Plasma Physics 1 (E1), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110583

Stober,  J.
Experimental Plasma Physics 1 (E1), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110609

Suttrop,  W.
Experimental Plasma Physics 2 (E2), Max Planck Institute for Plasma Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Becoulet, M., Huysmans, G., Sarazin, Y., Garbet, X., Ghendrih, P., Rimini, F., et al. (2003). Edge localized mode physics and operational aspects in tokamaks. Invited Papers from the 30th European Physical Society Conference on Controlled Fusion and Plasma Physics, A93-A113. doi:10.1088/0741-3335/45/12A/007.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0027-3C7D-A
Abstract
Recent progress in experimental and theoretical studies of edge localized mode (ELM) physics is reviewed for the reactor relevant plasma regimes, namely the high confinement regimes, that is, H-modes and advanced scenarios.

Theoretical approaches to ELM physics, from a linear ideal magnetohydrodynamic (MHD) stability analysis to non-linear transport models with ELMs are discussed with respect to experimental observations, in particular the fast collapse of pedestal pressure profiles, magnetic measurements and scrape-off layer transport during ELMs.

High confinement regimes with different types of ELMs are addressed in this paper in the context of development of operational scenarios for ITER. The key parameters that have been identified at present to reduce the energy losses in Type I ELMs are operation at high density, high edge magnetic shear and high triangularity. However, according to the present experimental scaling for the energy losses in Type I ELMs, the extrapolation of such regimes for ITER leads to unacceptably large heat loads on the divertor target plates exceeding the material limits. High confinement H-mode scenarios at high triangularity and high density with small ELMs (Type II), mixed regimes (Type II and Type I) and combined advanced regimes at high βp are discussed for present-day tokamaks. The optimum combination of high confinement and small MHD activity at the edge in Type II ELM scenarios is of interest to ITER. However, to date, these regimes have been achieved in a rather narrow operational window and far from ITER parameters in terms of collisionality, edge safety factor and βp.