Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Edge turbulence imaging in the Alcator C-Mod tokamak


Hallatschek,  K.
Centre for Interdisciplinary Plasma Science (CIPS), Max Planck Institute for Plasma Physics, Max Planck Society;
Tokamak Theory (TOK), Max Planck Institute for Plasma Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Zweben, S. J., Stotler, D. P., Terry, J. L., LaBombard, B., Greenwald, M., Muterspaugh, M., et al. (2002). Edge turbulence imaging in the Alcator C-Mod tokamak. Physics of Plasmas, 9(5), 1981-1989.

Cite as: http://hdl.handle.net/11858/00-001M-0000-0027-4130-7
The two-dimensional (2D) radial vs poloidal structure of edge turbulence in the Alcator C-Mod tokamak [I. H. Hutchinson, R. Boivin, P. T. Bonoli , Nucl. Fusion 41, 1391 (2001)] was measured using fast cameras and compared with three-dimensional numerical simulations of edge plasma turbulence. The main diagnostic is gas puff imaging, in which the visible D-alpha emission from a localized D-2 gas puff is viewed along a local magnetic field line. The observed D-alpha fluctuations have a typical radial and poloidal scale of approximate to1 cm, and often have strong local maxima ("blobs") in the scrape-off layer. The motion of this 2D structure motion has also been measured using an ultrafast framing camera with 12 frames taken at 250 000 frames/s. Numerical simulations produce turbulent structures with roughly similar spatial and temporal scales and transport levels as that observed in the experiment; however, some differences are also noted, perhaps requiring diagnostic improvement and/or additional physics in the numerical model. (C) 2002 American Institute of Physics.