English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Magnetic fluctuation probe design and capacitive pickup rejection

MPS-Authors
/persons/resource/persons109103

Franck,  C. M.
Stellarator Scenario Development (E5), Max Planck Institute for Plasma Physics, Max Planck Society;
VINETA, Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109244

Grulke,  O.
VINETA, Max Planck Institute for Plasma Physics, Max Planck Society;
Stellarator Scenario Development (E5), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109625

Klinger,  T.
Stellarator Scenario Development (E5), Max Planck Institute for Plasma Physics, Max Planck Society;
VINETA, Max Planck Institute for Plasma Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Franck, C. M., Grulke, O., & Klinger, T. (2002). Magnetic fluctuation probe design and capacitive pickup rejection. Review of Scientific Instruments, 73, 3768-3771.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0027-41AE-D
Abstract
In this article the capacitive pickup of magnetic fluctuation probes for plasma applications is studied. The nine most commonly used probe designs are compared with respect to their capacitive pickup rejection, magnetic sensitivity, and minimum plasma disturbance. For absolute calibration, well defined electric and magnetic field fluctuations are produced separately in a Faraday cup and in a Helmholtz magnetic field coil configuration, respectively. A sample measurement in a radio frequency helicon plasma demonstrates that the optimum probe design is well suited for measuring magnetic fluctuations in a plasma environment. (C) 2002 American Institute of Physics.