Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Characterisation and thermal loading of low-Z coatings for the first wall of W7-X

MPG-Autoren
/persons/resource/persons110684

Valenza,  D.
Material Research (MF), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109220

Greuner,  H.
Material Research (MF), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons109660

Kötterl,  S.
Material Research (MF), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons110287

Roth,  J.
Material Research (MF), Max Planck Institute for Plasma Physics, Max Planck Society;

/persons/resource/persons108745

Bolt,  H.
Material Research (MF), Max Planck Institute for Plasma Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Valenza, D., Greuner, H., Hofmann, G., Kötterl, S., Roth, J., & Bolt, H. (2002). Characterisation and thermal loading of low-Z coatings for the first wall of W7-X. Journal of Nuclear Materials, 307-311, 89-94.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0027-42DC-E
Zusammenfassung
Low-Z coatings with a thickness up to 500 pm are being developed as plasma facing material on stainless steel first wall panels for the W7-X stellarator under construction at Greifswald, Germany. The materials under investigation are boron carbide (B4C) and a silicon-boron-carbide (SIBOR, manufactured from Plansee A.G., Austria), both applied by vacuum plasma spraying. Thermal loading was performed in the First Wall Test Facility (FIWATKA) at the Research Centre Karlsruhe. In particular, stepwise increasing heat loads from 50 to 500 kW/m(2) and cyclic heat loads up to 1000 cycles of 3 min duration were applied to characterize the thermo-mechanical behaviour of the different coatings. Additionally, 2D and 3D finite element modelling is used to support the experiments and to predict the failure threshold of the coatings, which is also verified experimentally. (C) 2002 Elsevier Science B.V. All rights reserved.