Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

How old is the human footprint in the world's largest alpine ecosystem? A review of multiproxy records from the Tibetan Plateau from the ecologists' viewpoint

There are no MPG-Authors in the publication available
External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Miehe, G., Miehe, S., Böhner, J., Kaiser, K., Hensen, I., Madsen, D., et al. (2014). How old is the human footprint in the world's largest alpine ecosystem? A review of multiproxy records from the Tibetan Plateau from the ecologists' viewpoint. Quaternary Science Reviews, 86, 190-209. doi:10.1016/j.quascirev.2013.12.004.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0026-B41B-F
The age at which a human environment was made is strongly debated in Quaternary science. The perception of the human footprint requires an understanding of the contrast between the present cultural environment and the natural vegetation. This is especially true for high altitude ecosystems, such as the world's largest alpine ecosystem, the 450,000 km(2) of golf-course-like pastures dominating the southeastern Tibetan Plateau. This ecosystem is widely considered to be natural, but only because of the unawareness of the effects of grazing management and the incorrect assessment of human signals in palaeo proxies. Here we posit the hypothesis that this ecosystem is a human-induced replacement. To test our hypothesis against defined a priori criteria, we 1) monitored vegetation in grazing exclosures; 2) produced floristically complete vegetation records; 3) compared the vegetation records with data of the nearest climate stations; 4) surveyed forest and experimental reforestation trials with endemic tree species; 5) analyzed pollen and re-evaluated published pollen diagrams; and 6) integrated these results with palaeopedological and anthracological results of previous studies. The results of long-term grazing exclosure experiments, the prevalence of grazing-adapted plant functional types, the occurrence of isolated vigorous forests in "alpine" pastures, and the successful reforestation trials in presently treeless pastures together suggest that dominant pastures replaced forests in the montane belt and tall grassland in the alpine belt. The spatial and temporal coincidence of palaeosols and archaeological sites with tree species charcoal, the decline in forest pollen during the mid-Holocene climatic optimum, and the first appearance of human indicator pollen are most parsimoniously explained by the early presence of foragers and pastoralists. The onset of pastoralism in the Tibetan Highlands is presumed to date from the 8th millennium BP. (C) 2013 Elsevier Ltd. All rights reserved.