Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Angstrom-resolved real-time dissection of electrochemically active noble metal interfaces

MPG-Autoren
/persons/resource/persons133039

Shrestha,  Buddha R.
Interaction Forces and Functional Materials, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons133031

Baimpos,  Theodoros
Interaction Forces and Functional Materials, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons133041

Raman,  Sangeetha
Interaction Forces and Functional Materials, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125445

Valtiner,  Markus
Interaction Forces and Functional Materials, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Shrestha, B. R., Baimpos, T., Raman, S., & Valtiner, M. (2014). Angstrom-resolved real-time dissection of electrochemically active noble metal interfaces. ACS Nano, 8(6), 5979-5987. doi:10.1021/nn501127n.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0026-B45F-8
Zusammenfassung
Electrochemical solid/liquid interfaces are critically important for technological applications and materials for energy storage, harvesting, and conversion. Yet, a real-time Angstrom-resolved visualization of dynamic processes at electrified solid liquid interfaces has not been feasible. Here we report a unique real-time atomistic view into dynamic processes at electrochemically active metal interfaces using white light interferometry in an electrochemical surface forces apparatus. This method allows simultaneous deciphering of both sides of an electrochemical interface-the solution and the metal side-with microsecond resolution under dynamically evolving reactive conditions that are inherent to technological systems in operando. Quantitative in situ analysis of the potentiodynamic electrochemical oxidation/reduction of noble metal surfaces shows that Angstrom thick oxides formed on Au and Pt are high-ik materials; that is, they are metallic or highly defect-rich semiconductors, while Pd forms a low-ik oxide. In contrast, under potentiostatic growth conditions, all noble metal oxides exhibit a low-ik behavior. On the solution side, we reveal hitherto unknown strong electrochemical reaction forces, which are due to temporary charge imbalance in the electric double layer caused by depletion/generation of charged species. The real-time capability of our approach reveals significant time lags between electron transfer, oxide reduction/oxidation, and solution side reaction during a progressing electrode process. Comparing the kinetics of solution and metal side responses provides evidence that noble metal oxide reduction proceeds via a hydrogen adsorption and subsequent dissolution/redeposition mechanism. The presented approach may have important implications for designing emerging materials utilizing electrified interfaces and may apply to bioelectrochemical processes and signal transmission.