Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Lasersysteme für die Präzisionsspektroskopie sympathetisch gekühlter hochgeladener Ionen

MPG-Autoren
/persons/resource/persons129763

Feuchtenbeiner,  Stefanie
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Feuchtenbeiner, S. (2015). Lasersysteme für die Präzisionsspektroskopie sympathetisch gekühlter hochgeladener Ionen. Master Thesis, Ruprecht-Karls-Universität, Heidelberg.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0026-B7A7-C
Zusammenfassung
Cold, precisely localized highly charged ions are of particular interest for metrology and investigations of fundamental physics, such as possible drifts in the value of the fine structure constant alpha. Recently, it was possible to prepare Coulomb crystallized ultra-cold 40Ar13+-ions through sympathetic motional cooling in a cryogenic linear Paul trap [1]. For the spectroscopic investigation of the 2P3/2 - 2P1/2 M1 transition at 441nm in boronlike 40Ar13+ions sympathetically cooled to the mk-range, a tuneable Ti:Sa laser at 882nm with 100 kHz linewidth was built at the PTB. The laser setup including the frequency stabilization to a transfer cavity, which is locked to a Rubidium hyperfine transition using the Transfer-Modulation-Spectroscopy technique is presented. A first measurement of the MTS error signal is shown. For the sympathetic cooling of HCIs, 9Be+ is the coolant ion of choice. The cooling laser drives the 2S1/2 - 2P3/2 transition at 313 nm. For both precision spectroscopy of 40Ar13+and time dependent fluorescence measurements of 9Be+, power stabilization of the cooling laser is a necessary prerequisite. Therefor two intensity stabilization schemes were implemented and tested. Furthermore a setup for the determination of the Paul trap heating rate was built, which was tested by measuring the Doppler recooling times of a 0,5mm sized 9Be+ Coulombcrystal.